

Production and study of the most exotic neutron-rich nuclei via fast neutron induced fission

J.N. Wilson, IPN Orsay

Is it possible to use beams of fast neutrons to produce and study exotic nuclei?

$\frac{Part \ I}{(E_n \sim 2 \ MeV)}$ Fast neutron induced fission studies with LICORNE@IPNO

Part II Potential fast neutron induced fission studies @IFMIF/DONES (E_n ~ 14 MeV)

THE NUCLEAR CHART

Physics Cases

PRODUCTION OF EXOTIC NEUTRON RICH NUCLEI VIA FISSION

Spontaneous Fission ²⁵²Cf(SF), ²⁴⁸Cm(SF) (Gammasphere, Euroball)

Fission induced by thermal neutrons ²³⁵U(n_{th},f) ²⁴¹Pu(n_{th},f) (EXILL Exogam@ILL)

Fission induced by fast 1.5 MeV neutrons ²³⁸U(n,f), ²³²Th(n,f) (LICORNE @ IPN Orsay)

>reaction p(⁷Li,⁷Be)n using inverse kinematics

Source of fast focused neutron (between 0.5 and 4 MeV)

LICORNE II – COMMISSIONING NOV. 2014

Hydrogen gas cells

H₂ pressure and flow control system

Development of a kinematically focused neutron source with the p(⁷Li,n)⁷Be inverse reaction *M.Lebois, J.N. Wilson et al., Nucl. Instrum. Meth. A* 735 145 (2014)

COUPLING LICORNE + HPGE GAMMA SPECTROMETER

Precision spectroscopy of fast neutron induced reactions

EXPERIMENT IN MARCH 2015

LICORNE + MINIBALL (MARCH 2015)

LICORNE + MINIBALL (MARCH 2015)

3 weeks of beam time: ~ 3×10^9 events with M_v >= 3

SELECTION OF PROMPT GAMMA RAYS

SELECTION OF PROMPT GAMMA RAYS

Prompt fission gamma rays

ALL PROMPT GAMMA RAYS

PROMPT GAMMA-RAY SPECTRA

238U(n,f)

238U(n,f)

SELECTION OF DELAYED GAMMA RAYS

DELAYED GAMMA RAY SPECTRUM

What about new physics?

Te isotope yields from Miniball experiment

138,

LICORNE + Miniball data

Measured fission yields for 238U(n,f) @ 2MeV with LICORNE/Miniball

PART II

Potential fast neutron induced fission studies @IFMIF/DONES (En ~ 14 MeV)

AVERAGE NEUTRON MULTIPLICITIES

IFMIF/DONES

Fission becomes more symmetric with increasing E_n

MOVING TO HIGHER FLUX REGIME

Current fluxes ~10⁶ n/s/cm²

Very high fluxes ~10⁹ n/s/cm²

Thick targets essential (~10¹ grams)

Stopped fragments (~ps)

Thin targets possible (~10⁻² grams)

Moving fragments (v ~ 1cm/ns)

Doppler correction essential

Fission tag possible

A/Z characterization possible

Ti–Foil 100µm

IONISATION CHMABER AS A FISSION TAG

- High mass of actinide material (up to ~1g of fissile material). High event rates.
- Excellent fission tag
- No fragment directionality information
- No information on A/Z

IRMM IONISATION CHAMBERS

- ~10mg of actinide sample
- Excellent fission tag
- Mass resolution of ~4 mass units
- Fragment directionality information

2E 2V SPECTROMETERS

(e.g. STEFF, FALSTAFF, VERDI, SPIDER)

- Spectroscopy of exotic fission fragments is a posssible physics case for IFMIF/DONES
- **Equipment required is at least a high resolving power Ge spectrometer**
- High neutron fluxes means that thin actinide targets could be considered
- Doppler correction needed (i.e. fragment directional information essential)
- But varying degrees of mass/charge selectivity are possible
- □ Selectivity from:
- Isomeric states (good fission tag require to separate isomers/beta decay)
- Ionisation chambers (the greater the selectivity the lower the detected event rate)
- Gass filled magnet (see next talk)

ALTO/ v-ball hybrid spectrometer workshop 2016

19th – 20th May, at the IPN Orsay https://indico.in2p3.fr/event/12783/

THE NEUTRON BEAM CHARACTERISTICS: ENERGY RANGE, FLUX, ...

DELAYED GAMMA RAY SPECTRUM

Fission becomes more symmetric with increasing E_n

FIG. 1. Mass-yield curves for monoenergetic-neutroninduced fission of ²³⁸U.

AVAILABLE FLUXES

Comprendre le monde, construire l'avenir

Studies for γ-ray emission in the fission process with LICORNE

M. Lebois, J.N. Wilson, Q. Liqiang, P. Halipré,

G. Belier, R. Carroll, M. Fallot, G. Georgiev, A. Gottardo, J-M. Laborie, B. Laurent, R. Lozeva, I. Matea, P. Marini, L. Mathieu, A. Oberstedt, S. Oberstedt, A. Sardet, J. Taieb, A. Porta, P. Regan, S. Rose, C. Schmitt, R. Shearman, S. Siem, P. Regan, C.Varignon, D. Verney, N. Warr

> Thank you ありがと

Perspectives

A hybrid LaBr₃-Ge array for fast timing spectroscopic studies at the IPN Orsay

- Construction of a hybrid Ge + LaBr₃ array @ IPN Orsay
- Goal: to approach 10% total gamma photopeak efficiency
- LOI (2015) signed by 43 scientists from 17 different institutions
- Run for > 2 months using the ²³⁸U(n,f) and ²³²Th(n,f) reactions
- Workshop planned for May 2016 to fully develop physics cases

DEVELOPMENT OF A GAS TARGET FOR LICORNE

(commissionning performed nov. 2014)

Parasitic fusion evaporation reaction of ^{7}Li on ^{12}C

Need to change the PP target \rightarrow Gas target

Elements with Z > 73 required in the beam path

Conclusions

- ²³⁸U(n,f) or ²³²Th(n,f) reactions can be used to study neutron rich fission fragments for the first time (LICORNE@IPNO)
- Cold fission ($E_n \sim 1.5$ MeV produced with ⁷Li beam)
- Simultaneous production & study of hundreds of exotic nuclei
- Excellent selectivity of fission fragments and their partners via isomer tagging from ~50 ns – few μs (TIPS)

Perspectives

- Hybrid Ge/LaBr3 array to get lifetime information (v-ball)
- Fission tagging with gamma calorimeter or ionisation chamber

Design based around the Eurogam II spectrometer frame

- 24 Clover detectors in two rings, providing 4.5% photopeak efficiency
- 20 holes available in two rings, for either Ge or LaBr3 detectors
- Frame built in Strasbourg, France
- 17 Clovers paid for by France, 17 UK

[Currently all in Jyvaskyla, where French equipment has been based for 8 years]

Campaign to start in early 2017