

Neutrons for Science at SPIRAL-2

X. Ledoux and the NFS collaboration

Outline

- Description of NFS
- Physics case
- IFMIF/DONES

□ NFS is one of the two facilities of the LINAG Experimental Area

□ Neutron beam between 100 keV and 40 MeV

□ Irradiation station for n, p, d and ions induced reactions

- Fundamental physics
- Fission reactors of new generation
- Fusion technology
- Studies related to hybrid reactors (ADS)
- Nuclear medicine
- Development and characterization of new detectors
- Radioisotopes production for medical applications
- Biology
- Study of the single-event upsets

Basic data needed for evaluated data bases

SPIRAL2 phase 1 building

The NFS facility

NFS: The converter room

NFS: the TOF area

Continuous neutron spectra

Thick converter (6 to 10 mm) Proton or deuteron beam I_{max} =50 µA at E=40 MeV Characteristics of the beams the LINAG :

- 40 MeV deuteron and 33 MeV proton
- $-I_{max} = 5 \text{ mA}$
- Pulsed beam $F_0 = 88 \text{ MHz}$ T=11 ns Burst width = 200 ps

Similar to IFMIF spectrum

 $p+^{7}Li \rightarrow n + ^{7}Be \quad Q= -1.64 \text{ MeV}$

Lithium foil on cupper frame cooled by water cooling

Comparison with other Neutron TOF facilities

Measurements by activation method

or

1- Sample irradiation in the converter room

ion induced reactions

2- Transfer of sample to TOF room

Cross-section measurements by activation method Study of radioisotope production

Physics case and first experiments

LoI and proposals for Day-One experiments at NFS

• Neutron induced reactions studies :

In blue : new proposals presented during the NFS workshop

- Lol_13 : Study of pre-equilibrium process in (n,xn) reaction, X. Ledoux
- Lol_14 : Comparison between activation and prompt spectroscopy as means of (n,xn) cross section measurements, *M. Kerveno*
- Lol_20 : Direct measurement of (n,xn) reaction cross sections on ²³⁹Pu, G. Bélier
- Lol_21 : Light-ion production studies with Medley, S. Pomp

SCALP - Scintillating ionization Chamber for ALpha particle Production in neutron induced reaction, G. Lehaut

Fission :

- Lol_15 : Fission fragment distributions and neutron multiplicities, D. Doré
- Lol_22 : Fission fragment angular distribution and fission cross section measurements relative to elastic np scattering with Medley, S. Pomp
- Lol_28 : Study of the fission process and fission cross-section measurements, G. Bélier

Measurements of prompt fission neutron energy spectra for fast neutron induced fission on major and minor actinides, A. Sardet

Measurement of prompt fission gamma-ray spectra in fast neutron induced-fission of actinides, J.M. Laborie

Gamma-rays spectroscopy and lifetime measurements at NFS, A. Dijon

Cross-section reaction measurements by activation technique :

Lol_16 : Proton and deuteron induced activation reactions, P. Bem

Lol_24 : Neutron-induced activations reactions, A. Klix

Measurement of cross-sections of deuteron-induced reactions on Ni and Zn, J. Grinyer

Biology :

Lol_23 : Response of Mammalian cells to neutron exposure, *C. Hellweg* R&D for the production of radioisotopes for medical applications at NFS, G. De France Investigation of ²¹¹At and ⁶⁴Cu medical radioisotope production at NFS, J. Grinyer

Detector development :

Lol_29 : Neutron spectrometer characterization for LMJ project, B. Rossé

Characterization of neutron signal in Si-CsI telescope and measurement of the absolute neutron detection efficiency, E. Bonnet

Study of (n,X) reactions

(n,xn) reactions

- Main part of the cross-section
- Accurate measurements up to 40 MeV of :
 - \circ cross-section
 - o neutron multiplicity
- 4π neutron detector
- (n,n'γ)-technique (GAINS)

□ (n,LCP)

- Gazes and default production
- Energy deposition in therapy
- Composite particle prediction → no model works
- Double differential measurements (MEDLEY)
- Few data exits between 20 and 50 MeV

□ Advantage of NFS

- High flux
- Collimated neutron beam
- Energy range and energy resolution

Neutron induced fission

□ Need of data for fast neutron essentially for minor actinides (ADS, GEN IV reactors)

- Cross-section measurements
- Neutron, gamma multiplicity and spectra
- Fragment yields → residual heat in the reactors

Study of the fission process

- fission fragment mass and charge distributions
- ff kinetic energy (deformation energy, scission conf)
- neutron multiplicity (deformation energy)
- Need of data below the 2nd chance fission and beyond

Experimental set-ups

- Fission chambers, active targets
- MEDLEY, FALSTAFF,....

Advantage of NFS

- High flux
- Energy resolution
- Use of actinide samples

Maximal activity 1 GBq for thin sample 10 GBq for thick target

Neutron, proton and deuteron induced reactions

Measurement of reaction cross-sections by activation technique :

- Data for IFMIF facility design
- Improvement of reaction model

□ NFS opens a possibility to extend the activation experiments :

- High intensities
- High deuteron energies
- Isotopes with short half lives can be studied.

IFMIF/ELAMAT Workshop, Rzeszow, 14-15 April 2016

DONES Nuclear physics experiments at IFMIF

- Neutron energy spectrum similar to NFS
- Very high flux 10¹⁸ n/s/m²

Very interesting tool for physics

IFMIF

10²

Main characteristics :

- Energy range
- High neutron flux
 - Samples of small mass (enriched, radioactive)
 - Small cross-section measurements
 - Low efficiency detection set-up

Important parameters :

- Neutron energy measurement
 - o Differential measurement
 - \circ Excitation functions measurement
- Neutron and photon background
 - \circ Use of photon and neutron detectors
 - o Use of fissile targets

Energy measurement

Neutrons are not mono-energetic

E measurement by time-of-flight

□ The energy range is defined by the beam frequency and the flight path:

□ The energy resolution is defined by the time resolution and the flight path

$$\frac{\Delta E}{E} = \gamma \left(\gamma + 1\right) \sqrt{\left(\frac{\Delta t}{t}\right)^2 + \left(\frac{\Delta L}{L}\right)^2}$$

Energy resolution for 40MeV neutron: $\Delta t = 1 \text{ ns}$ $L = 5 \text{ m} \Rightarrow \Delta E/E < 6\%$ $L = 20 \text{ m} \Rightarrow \Delta E/E < 2\%$ $\Delta t = 7 \text{ ns}$ $L=20 \text{ m} \Rightarrow \Delta E/E < 5\%$

Pulsed beam

\Box Neutrons are produced in 4 $\pi ~~ \rightarrow ~$ Shielding for the detection set-up

- Detector shielding
- Collimator → Beam profile
- Neutron beam dump → Background

□ Very intense neutron flux :

- Photon background from activation
- Choice of the materials

Summary

□ NFS:

- Characteristics:
 - $_{\odot}\mbox{White}$ and quasi-mono-energetic spectra in the 1-40 MeV range
 - \circ Neutron beams with high flux and good energy resolution
 - Measurements by activation reactions (n, p, d)
- Physics case
 - \circ Fission studies : $\sigma,$ fragments, yields, neutron and gamma multiplicities
 - \circ (n,xn) and (n,lcp) reactions: $\sigma~$ and $d^2\sigma/dEd\Omega$
 - \circ Deuteron and proton induced reactions
 - o Detector development, Biology

□ IFMIF/DONES:

- Powerful tool for nuclear physics
 - Energy range
 - $_{\odot}$ Very high flux
- To increase the interest :
 - \circ Pulsed beam \rightarrow F < 1MHz
 - Experimental area(s) with very efficient shielding