Damage accumulation in irradiated materials: influence on structural and functional properties

Some lessons learnt from fission studies

J. Jagielski

National Centre for Nuclear Research, Swierk/Otwock, Poland

NARODOWE CENTRUM BADAŃ JĄDROWYCH

Świerk

Strategy for material testing in nuclear environment

- 1. Selection based on classical material science
- 2. Analysis of radiation damage below Coulomb barrier
- 3. Testing in near-real environment
- 4. Analysis of samples from dismounted nuclear installations
- 5. Analysis of test samples from real nuclear installation

SAFETY ANALYSES (computer simulations) vs EXPERIMENTAL VALIDATION TECHNICAL PROBLEMS vs LEGAL ISSUES

10 keV Si+ in Si

Courtesy of Frank Posselt, HZDR

Short summary:

- 1. Fast particles loose their energy in two independent processes: Se and Sn
- 2. Inelastic collisions with electrons (Se) essentially produce no defects
- 3. Elastic collisions with target nuclei (Sn) displace atoms from lattice positions
- 4. Se dominates for light and swift particles (begining of the slowing down)
- 5. Sn dominates for slow and heavy particles (end of the trajectory)
- 6. Most of the defects are produced by displaced target atoms
- 7. Most of the defects anneal out during evolution of displacement cascade (100 ps)

Calculation of the damage level, Kinchin-Pease approach:

$$N_d = 0.8 \Delta E_n / (2E_d)$$
 ions

E_n – nuclear energy loss (elastic collisions) E_d – displacement energy

$$N_d = E/(2E_d) (E < E_c)$$

 $N_d = E_c/(2E_d) (E > E_c)$

neutrons

Calculation of the damage level:

Example : 0.5 MeV neutrons interacting with iron [A=56] target.

 $E_n = 0.5 \text{ MeV N} = 0.85 \text{ x } 10^{23} \text{ atoms/cm}^3 \sigma_{el} = 3 \text{ b}, E_d = 24 \text{ eV}$ $\Phi = 10^{15} \text{ n/cm}^2 \text{s } \Lambda = 4A (1+A)^2 = 0.069 \text{ and } N_d = 350 \text{ dpa per neutron}$ collision and $R_d = 9 \text{ x } 10^{16} \text{ displacements/cm}^3 \text{s} = 10^{-6} \text{ dpa/s}$

DONES: <10-30 dpa per year, ion accelerator: 150 dpa per day

Calculation of the damage level:

Head	[])[(Setup	Window)	Ту	pe of TRIM	1 Calc	ulatio	n		B
TR Restore L	IM Demo .ast TRIM Data Symbol N	? ? Vame of Eleme	DAMAGE Basic Plots Atomic nt Number M) etailed Calo Ion Distribut Iass (amu)	ulation with full D ion with Recoils p Energy (keV)	amage Ca rojected o Angle of Ii	ascades on Y-Plane ncidence			· · ·
	PT Xe Xer	non	▼ 54 1	131.904 Inp	1000 ut Elemen	? 0 ts to	Layer	1		
Layers A	dd New Layer Width	2 Density C (a/cm3)	ompound Corr Gas	New Elen Symbol	nent to Layer Name	Atomie	Compou Weight (r (amu)	nd Dictio Atom Stoich or 2	onary Dam % Disp	iage (eV) Latt Surf
X Layer 1	4000 Ang	▼ 6.9 j		K <mark>P1</mark> Zn K <mark>P1</mark> Zn	Zr D	▼ 30▼ 30	65.39 65.39	1 33 2 66	.3 25 .6 25	3 1.3 ¹ 3 1.3 ¹
			<u> </u>							
Special Paramete Name of Calculation Xe (100000) into Layer ? AutoSave at Ion 1 ? Total Number of I ? Random Number	e rs 1 ‡ 10000 ons 1 Seed	Stopping Po SRIM-2000 Plotting W Min Max	ower Version 8 • ? /indow Depths ? 0 L 4000 L	? Out ? 6 ? 7 ? 7 ? 5 ? 5 ? 7	put Disk File on Ranges ackscattered Ion ransmitted Ions/F puttered Atoms ollision Details 0 Special	s C s C Recoils	Resume TRIM ca ? ?	saved	Save Run Clea Calculat Range	Input & TRIM ar All te Quick a Table Menu

www.srim.org

Damage creation

Ion Irradiation / Plasma pulses

Damage analysis

Damage analysis

RBS/C: Chanelling

Damage analysis

Nanoindentation

Damage analysis

Other techniques

- 1. Scanning microscopy: SEM/EDS/EBSD/FIB
- 2. X-Ray diffraction: XRD/GXRD/HRXRD
- 3. Raman
- 4. Positrons: SPIS
- 5. Luminescence: CL, PL, IL
- 6.

Functional properties

Inactive laboratory

- 1. Structural analysis, sample preparation
- 2. Nanomechanical Lab: nanoindentation, RT, HT, SPM
- 3. Mechanical Lab: hardness, strength, fracture, brittleness
- **4. Corrosion Lab:** *HT corrosion, stress corrosion, reaction with gases*
- 5. Validation of safety analyses

Hot cell laboratory

- 1. Structural analysis, sample preparation
- 2. Nanomechanical Lab: nanoindentation, RT, HT, SPM
- 3. Mechanical Lab: hardness, strength, fracture, brittleness
- 4. Corrosion Lab: *HT corrosion, stress corrosion, reaction with gases*

Damage accumulation kinetics

- 1. Quantitative measurement of damage level
- 2. Dependency of damage level vs. irradiation measure (fluence, d.p.a.)
- 3. Method of choice: RBS/C combined with MC simulations

Advantages of RBS/C + MC simulations:

Possibility to analyze multielemental targets
Ability to determine defect distribution in thick layers
Potential to reproduce RBS/C spectra recorded on samples containing simple (amorphous) and complex (dislocations) defects

RBS/C spectra recorded on SiC crystal fitted with amorphous defects

Existing models

Gibbons (Single Impact and Damage Accumulation)

Direct Impact / Cascade Overlap

Nucleation and Growth

DI/DS (Direct Impact / Defect Stimulated)

MSDA (Multi Step Damage Accumulation)

Multi-stage damage accumulation

Case: radiation damage in ZrO₂ crystal

Low-energy irradiation:

In-situ experiment at RT; 4 MeV Au⁺, fluence increasing up to 2x10¹⁶ cm⁻², Analysis: RBS/C with 1.6 MeV He⁺

Role of the temperature

Ferritic steel

nieimplantowane

1x10¹⁷ at.N/cm², 100keV

2x10¹⁷ at.N/cm², 100keV

Mechanical properties of irradiated spinel

Hot cell Lab Zespół komór ołowiowych. Sluza Zbiorniki transportowa. ścieków aktywnych. Pomieszczenia dekontaminacyjne. Korytarz remontowo-transportowy Remont manipulatorów Pom. Đ Pomieszczenie operatorskie. socjalnosanitarne. Zaplecze laboratoryjno-techniczne. Pomieszczenia W.C. socjalno-sanitarne.

Hot cell Lab: main equipment

Hot cell Lab: main equipment

Hot cell Lab: mandatory conditions

- 1. Safety
- 2. Security
- 3. Access control
- 4. Dosimetry
- 5. Waste collection
- 6. Certificates
- 7. Accreditation

Hot cell Lab: Samples

Conclusions

Analysis of irradiation effects in materials should include ion irradiation.

Research infrastructure needed is similar to that used in **research on fission**: close cooperation is thus reasonable.

Urgent need to develop protocols of mechanical measurements on **miniaturized samples**.

Validation experiments for safety analyses should be included in the research program.

Topic to be discussed with regulatory bodies: **licensing requirements** for fusion devices.

Acknowledgement

Andrzej Turos, Lech Nowicki, Lionel Thomé, Frédérico Garrido, Pascal Aubert, Bruce Arey, Libor Kovarik, Yanwen Zhang, Łukasz Kurpaska, Iwona Jóźwik, etc, etc...

Thank you for your attention