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Strategy for material testing in nuclear environment 

Defect production 

1. Selection based on classical material science  

 

2. Analysis of radiation damage below Coulomb barrier 

 

3. Testing in near-real environment 

 

4. Analysis of samples from dismounted nuclear installations 
 

5. Analysis of test samples from real nuclear installation 

SAFETY ANALYSES (computer simulations) vs EXPERIMENTAL VALIDATION 

TECHNICAL PROBLEMS  vs LEGAL ISSUES 
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Sputtering Recoil atom 

Ion 

Collision cascade 

Implantowany jon 



Defect production by fast particles 

Defect production 

S=dE/dx=Se + Sn 

Se: ionization 

Sn: elastic collisions 

Se: keV/nm 

Sn: d.p.a. 



Defect production by fast particles 

Defect production 

10 keV Si+ in Si 

Courtesy of Frank Posselt, HZDR 



Defect production by fast particles 

Defect production 

  

Short summary: 

1. Fast particles loose their energy in two independent processes: Se and Sn 

2. Inelastic collisions with electrons (Se) essentially produce no defects 

3. Elastic collisions with target nuclei (Sn) displace atoms from lattice positions 

4. Se dominates for light and swift particles (begining of the slowing down) 

5. Sn dominates for slow and heavy particles (end of the trajectory) 

6. Most of the defects are produced by displaced target atoms 

7. Most of the defects anneal out during evolution of displacement cascade (100 ps) 



Defect production by fast particles 

Defect production 

  

Calculation of the damage level, Kinchin-Pease approach: 

Nd = 0.8 ΔEn/(2Ed) 

En – nuclear energy loss (elastic collisions) 

Ed – displacement energy 

Nd = E/(2Ed) (E<Ec) 

 

ions 

neutrons 

Nd = Ec/(2Ed) (E>Ec) 



Defect production by fast particles 

Defect production 

  

Calculation of the damage level: 

Example : 0.5 MeV neutrons interacting with iron [A=56] target. 

  

En = 0.5 MeV N = 0.85 x 1023 atoms/cm3 σel = 3 b,  Ed = 24 eV  

Φ = 1015 n/cm2s Λ = 4A (1+A)2 = 0.069 and Nd = 350 dpa per neutron 

collision and Rd = 9 x 1016 displacements/cm3s = 10-6 dpa/s  

DONES: <10-30 dpa per year, ion accelerator: 150 dpa per day 



Defect production by fast particles 

Defect production 

  

Calculation of the damage level: 

www.srim.org 



Damage creation 

Damage analysis 

  
Ion Irradiation / Plasma pulses 



Damage analysis 

Damage analysis 

  
RBS/C: Chanelling 



Damage analysis 

Damage analysis 

  
TEM/HRTEM 
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Nanoindentation 
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Damage analysis 

Damage analysis 

  
Other techniques 

1. Scanning microscopy: SEM/EDS/EBSD/FIB 

2. X-Ray diffraction: XRD/GXRD/HRXRD 

3. Raman 

4. Positrons: SPIS 

5. Luminescence: CL, PL, IL 

6. …… 



Functional properties 

Damage analysis 

Inactive laboratory 

1. Structural analysis, sample preparation 

2. Nanomechanical Lab: nanoindentation, RT, HT, SPM 

3. Mechanical Lab: hardness, strength, fracture, brittleness 

4. Corrosion Lab: HT corrosion, stress corrosion, reaction with gases 

5. Validation of safety analyses 

Hot cell laboratory 

1. Structural analysis, sample preparation 

2. Nanomechanical Lab: nanoindentation, RT, HT, SPM 

3. Mechanical Lab: hardness, strength, fracture, brittleness 

4. Corrosion Lab: HT corrosion, stress corrosion, reaction with gases 



Damage accumulation kinetics 

Existing models 

1. Quantitative measurement of damage level 
 

2. Dependency of damage level vs. irradiation measure (fluence, d.p.a.) 
 

3. Method of choice: RBS/C combined with MC simulations 

Advantages of RBS/C + MC simulations: 

 
•Possibility to analyze multielemental targets 

•Ability to determine defect distribution in thick layers 

•Potential to reproduce RBS/C spectra recorded on 

samples containing simple (amorphous) and 

complex (dislocations) defects 
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RBS/C spectra recorded on SiC crystal fitted with 

amorphous defects 



Existing models 

Gibbons (Single Impact and Damage Accumulation) 

 

Direct Impact / Cascade Overlap 

 

Nucleation and Growth 

 

DI/DS (Direct Impact / Defect Stimulated) 

 

MSDA (Multi Step Damage Accumulation) 

Existing models 



Multi-stage damage accumulation 

Multi-stage damage accumulation 
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Case: 

radiation damage in ZrO2 crystal 

Case study: irradiated zirconia 

Low-energy irradiation: 

 

In-situ experiment at RT; 4 MeV Au+, fluence increasing up to 2x1016 cm-2,  

Analysis: RBS/C with 1.6 MeV He+  



Case study: irradiated zirconia 
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Role of the temperature 

Case study: irradiated zirconia 



Ferritic steel 

Case study: implanted steel 

  

nieimplantowane 1x1017 at.N/cm2, 100keV 2x1017 at.N/cm2, 100keV 



Mechanical properties of irradiated spinel 

Case study: irradiated spinel 
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Hot cell Lab 

Hot cell Lab 



Hot cell Lab: main equipment 

Hot cell Lab 



Hot cell Lab: main equipment 

Hot cell Lab 



Hot cell Lab: mandatory conditions 

Hot cell Lab 

1. Safety 

2. Security 

3. Access control 

4. Dosimetry 

5. Waste collection 

6. Certificates 

7. Accreditation 



Hot cell Lab: Samples 

Hot cell Lab 



Conclusions 

Conclusions 

Analysis of irradiation effects in materials should include ion irradiation.  

 

Research infrastructure needed is similar to that used in research on 

fission: close cooperation is thus reasonable. 

 

Urgent need to develop protocols of mechanical measurements on 

miniaturized samples. 

 

Validation experiments for safety analyses should be included in the 

research program.  
 

Topic to be discussed with regulatory bodies: licensing requirements 

for fusion devices.  
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