EUROPEAN SPALLATION SOURCE

Future Scientific Possibilities in Neutron Scattering at the European Spallation Source for Users from Academia and Industry



Arno Hiess Scientific Activities Division European Spallation Source ERIC, Lund, Sweden

## **European Spallation Source - Scope**



publication

by user



"A partnership of European Nations collectively building and operating the world's leading user facility for research using neutrons."

data.

modeling

## The European Spallation Source ERIC Project Commitments



✓ 5 MW accelerator capability, 2.8ms long pulse, 14Hz
 ✓ Innovative instrument suite with initially 16 instruments
 ✓ Construction cost of 1,843 B€; Steady-State Ops at 140 M€/year

## The road to realizing the world's leading facility for research using neutrons





#### **Construction ongoing**















Dec 2015

#### **Evolution of neutron sources**





(Updated from *Neutron Scattering*, K. Skold and D. L. Price, eds., Academic Press, 1986)

#### The unique ESS long pulse of cold neutrons (E = 2.5meV)





## The ESS Neutron Instrument Suite



EUROPEAN SPALLATION SOURCE



## Science Drivers for the Reference Instrument Suite



SourceMulti-Purpose Imaging<br/>ODINSourceGeneral-Purpose SANS<br/>SKADIBroadband SANS<br/>LOKIBroadband SANS<br/>LOKISurface ScatteringSurface ScatteringVertical Reflectometer<br/>ESTIA

Thermal Powder Diffractometer HEIMDAL

Bispectral Powder Diffractometer DREAM

Monochromatic Powder Diffractometer

Materials Science Diffractometer BEER

Extreme Conditions Diffractometer

Single-Crystal Magnetism Diffractometer MAGICS

Macromolecular Diffractometer NMX



| Cold Direct Geometry<br>Spectrometer C-SPEC     | 🔊 🎍 🗲   |
|-------------------------------------------------|---------|
| Wide Bandwidth Direct<br>Geom. Spectrometer VOR | 🔊 论 🥉 🎸 |
| Bispectral Direct Geometry<br>Spectrometer TREX | 🦾 🖕 💈   |
| Cold Crystal-Analyser<br>Spectrometer CAMEA     | E 🕹 💈 🥕 |
| Vibrational Spectrometer<br>VESPA               | 🦾 🎍 💈   |
| Backscattering<br>Spectrometer MIRACLES         | 🔊 🧐 🍐   |
| High-Resolution Spin-Echo                       | 🔊 🦫 🎍 💈 |
| Wide-Angle Spin-Echo                            | 🔊 🗞 🎸 💈 |
| Fundamental & Particle<br>Physics               | 2010 A  |

Outside ESS construction scope:

- Fast neutron application (BNCT, chipIR)
- neutron- antineutron oscilaations
- Isotope production, material irradiation
- μSR, neutrinos

Spectroscopy

#### Neutrons are special

- charge neutral: deeply pene-trating
  ... except for some isotopes
- nuclear interaction: cross section depending on isotope (not Z), sensitive to light elements.
- spin S = 1/2: probing magnetism
- unstable  $n \rightarrow p + e + \underline{v}_e$  with life time  $\tau \sim 900s$ ,  $I = I_0 e^{-t/\tau}$
- mass: n ~p; thermal energies result in non-relativistic velocities.
   E = 293 K = 25 meV,
   v = 2196 m/s , λ = 1.8 Å

WHERE ARE THE ATOMS AND WHAT DO THEY DO?







#### Scattering based on Momentum and Energy conservation







momentum conservation

$$\vec{Q} = \vec{k}_i - \vec{k}_f$$

energy conservation

$$\hbar\omega = E_i - E_f$$

spin conservation:

**Polarisation analysis** 



#### Length and Energy Scales



## User Community based on publications





European Community 5000 - 6000 researchers 2000 publications per year

#### Neutron use per science topic





data: ILL



## Formation of nano-MOF-5 in the presence of a modulator



Metal organic frameworks (MOF): hybrid materials with organic and inorganic components

Large internal surfaces: promising candidates for gas storage, gas separation and catalysis.

Contrast matching using (partly) deuterated compounds reveals shell around the MOF

The modulator wraps around nanoparticle.





Zacher et al. (ILL 2014)



### Neutrons for Energy Research



energy

Real-time neutron diffraction studies of electrode materials for Li-ion batteries.

Neutrons are sensitive to light elements light lithium.

High intensity powder diffraction reveals lithium extraction / insertion in electrode material.





Bianchini and Suard (ILL 2014)

# Stress around fatigue cracks



#### new materials, mobility

#### Fatigue + Creep Crack in 25mm Austenitic steel



#### Neutron use per science topic





data: ILL

#### Conclusions





Strong European Scientific Community is mobilized and ....
 ... we are building ESS together now to meet our needs.