

Research on radiation damage of fusion relevant materials carried out at Warsaw University of Technology

Ł. Ciupiński Warsaw University of Technology

Outline

- Part I: Transmission electron microscopy investigations of self-damaged tungsten targets
- Part II: Miniaturized sample testing at Faculty of Materials Science / WUT (Z. Pakieła et al.)

EUROfusion Task under: PFC.SP3.1 - Role of neutron damage on retention mechanism and strength in W / Be

Partners: Institute of Plasma Physics, Garching, Germany Jožef Stefan Institute, Ljubljana, Slovenia

Goal: Evaluate defects morphology and distribution as well as dislocation density in the damaged W targets

Samples 2015

Sample number	Implantation conditions
	20 MeV W ions, 0.5 dpa, at 300K, no pre-annealing, exposed to D atoms
1. A0780A	at 450K
2. A0781A	0.5 dpa , at 300K, annealed at 600K for 1h, exposed to D atoms at 450K
3. A0782A	0.5 dpa , at 300K, annealed at 800K for 1h, exposed to D atoms at 450K
4. A0783A	0.5 dpa , at 300K, annealed at 1000K for 1h, exposed to D atoms at 450K
5. A0785A	0.5 dpa , at 300K, annealed at 1130K , exposed to D atoms at 450K

0. Self-ion damaged W plate from IPP W⁶⁺ ions, 3 MV

1. FIB milling – thickness 200-250 nm Ga ions, 40 kV, HITACH NB5000

2. Thinning (gentle milling) – Ar ions, 1kV to 500 V

M. Rasiński - Doctoral thesis

O.V. Ogorodnikova et. al., 2013, IPP

Research on radiation damage at WUT

Research on radiation damage at WUT

Research on radiation damage at WUT

"Dislocation density drops by 66 % for the highest annealing temperature compared to the unannealed sample. This is in good agreement with the total D concentration results obtained by NRA and TDS, where also 60 % decrease was observed."

Anže Založnik, Sabina Markelj, Thomas Schwarz-Selinger, Łukasz Ciupiński, Justyna Grzonka, Primož Vavpetic, Primož Pelicon, The influence of the annealing temperature on deuterium retention in self-damaged tungsten, Phys. Scr. T167 (2016) 014031 (5pp)

Part II – Miniaturized sample testing

Why we need small samples in IFMIF / DONES?

Source: http://www.ifmif.org

- Limited space for specimens in the irradiation capsule / limited HF volume
- For reliable engineering data for DEMO design many samples needed.
- Handling of active samples is "easier"
 when they are small

Is IFMIF / DONES the only reason to develop miniaturized sample testing methods?

Motivation to use miniaturized samples

- Material / technology related: nanomaterials, weld heat affected zones, layers and coatings, gradient materials
- Design related: small cross section, complex shape (e.g. gear parts)
- Cost related: low invasiveness of the inspection vs. repair costs

A-Plate 316L, B-HAZ+ weld, C-Weld

cutting out mini specimens from a homogenizer mill

100 mm

Challenges

- Technical issues
 - Samples preparation
 - Gripping
 - Strain measurement
 - Alignment
 - Loading stability

.

Standard and mini specimen for tensile test

- Size effect issues
 - Relative volume of "surface layer"
 - Microstructure elements / sample size relation
 - Sample geometry

Types of tests carried out at small samples at WUT

- Static Tensile Test
- Mini Disc Bend Test (MDBT)
- Fatigue Crack Growth (FCG)

FCG test sample gripping system

Samples before and after the MDBT

Reliable strain measurements – optical method

Optical method – Digital Image Correlation (DIC)

Testing stand setup

Optical extrensometer

Strain field on the mini specimen surface

Miniaturized disc bend test

The LN container

Samples before and after the MDBT

MDBT stand at WUT

The deformation stages during MDBT

- 1 elastic regime,
- 2 elastoplastic regime,
- 3 4 plastic deformation and strengthening
- 5 crack initiation and propagation

M.P. Manahan "A new postirradiation mechanical behavior test - the Miniaturized Disk Bend Test", Nuclear Technlogy, Vol. 63, nov 1983

MDBT "applications"

- Strength of the material correlation with YS and UTS
- Ductile to brittle transition temperature correlation with Charpy Impact Test
- Crack resistance correlation with K_{IC} i J_{IC} obtained in CT test

Figure 1: Sample surface pattern: a-small magnification set-up, b-large magnification set-up with laser light, c-large magnification setup with white light and polarizing filters T. Brynk et al., 2010

Fatigue Crack Growth testing

Mini-samples testing with optical crack length measurements

Manual crack tip tracking

$$K_{\max} = \left(\frac{P}{Wt}\right) (\pi a)^{\frac{1}{2}} \cdot M_f$$

$$M_{f} = \left\{ 1,12 - 0,231 \left(\frac{a}{W}\right) + 10,55 \left(\frac{a}{W}\right)^{2} - 21,72 \left(\frac{a}{W}\right)^{3} + 30,39 \left(\frac{a}{W}\right)^{4} \right\}$$

a – crack length, W - sample width, t - sample thickness, P – maximal force

DIC and inverse method

da/dN tests of ECAPed AI 5483

Summary

- Investigations of radiation damage in tungsten have been successfully carried out at WUT since 2011 in cooperation with foreign fusion laboratories.
- The estimated dislocations densities correlate with the amount of deuterium trapped in the material.
- Miniaturized samples testing is developed at WUT for more than 10 years.
- Considerable experience and knowledge have been gathered for different type of mechanical tests.
- The tests are used in practice to evaluate degradation of properties of components being in service at industry.