

Institut Laue-Langevin Nuclear and Particle Physics group

FIPPS FIssion Product Prompt gamma-ray Spectrometer

ILL: A. Blanc, A. Chebboubi, H, Faust, M. Jentschel, U. Kőster, P.Mutti, E. Ruiz-Martinez
CEA-Saclay: T. Materna
LPSC-Grenoble: G. Kessedjian, C. Sage, G. Simpson
University of Warsaw: W. Urban

Institut Laue-Langevin, blanc@ill.fr

- Nuclear physics at ILL
- EXILL
 - Motivation
 - Setup
 - Performances
- ► FIPPS
 - FIPPS layout
 - FIPPS with fast neutrons
- Conclusion

Institut Laue-Langevin

- operates 58 MW high flux reactor with intense extracted neutron beams
- operating since 1971
- today 14 member states: F, D, UK, E, CH, A, I, CZ, S, HU, B, SK, DK, IN
- over **40 instruments**, mainly for neutron scattering
- **user facility:** 2000 scientific visitors from 45 countries per year

Nuclear Physics at ILL (1)

The LOHENGRIN fission fragment separator:

 $\Delta A/A = 3E-4 - 3E-3$ $\Delta E/E = 1E-3 - 1E-2$

up to 10⁵/s mass-separated fission fragments ($T_{1/2} \ge \mu s$)

The LOHENGRIN recoil separator

Gamma-ray spectrometer (GAMS):

Nuclear Physics at ILL (2)

Fundamental physics :

- Detailed spectroscopy of neutron rich nuclei, astrophysical r-process
- Nuclear fission studied via prompt spectroscopy

- Nuclear waste burning
- Generation IV reactors
- Elemental imaging

EXILL

Motivation

SetupPeformances

Institut Laue-Langevin, blanc@ill.fr

EXogam @ ILL

High efficiency germanium array

58 MW high flux reactor with intense extracted neutron beams

=> γ-ray spectroscopy of cold neutron induced reactions on 14 stable and 3 actinide targets

Institut Laue-Langevin, blanc@ill.fr

EXILL

Motivation
 Setup
 Performances

Institut Laue-Langevin, blanc@ill.fr

EXILL campaign at PF1B: EXOGAM @ ILL

(October 2012 \rightarrow April 2013)

EXOGAM+GASP array: Provided by GANIL and LNL

235U and 241Pu targets with thick backing

EXILL campaign at PF1B: EXOGAM @ ILL

(October 2012 \rightarrow April 2013)

EXOGAM+GASP array: Provided by GANIL and LNL

+ FATIMA LaBr array for ½ cycle

235U and 241Pu targets with thick backing

EXILL campaign at PF1B: EXOGAM @ ILL

(October 2012 \rightarrow April 2013)

EXOGAM+GASP array: Provided by GANIL and LNL

+ FATIMA LaBr array for 1/2 cycle

Collimation:

φ12 mm "pencil" neutron beam

235U and 241Pu targets with thick backing

IFMIF/ELAMAT

Fission targets

Targets **sandwiched between dense backings** for rapid stopping of fission fragments.

1. ²³⁵U-Zr/Sn, nominal fission rate 70 kHz

3 layers UO_2 (total 575 µg/cm² of 99.7% enriched ²³⁵U) laminated with Sn between 15 µm thick Zr foils (nuclear grade, <50 ppm Hf)

2. ²³⁵U-Be, nominal fission rate 90 kHz

1 layer UO_2 (675 µg/cm² of 99.7% enriched ²³⁵U) glued with thin layer of cyanoacrylate between 25 µm thick Be foils

3. ²⁴¹Pu-Be, nominal fission rate 70 kHz

1 layer PuO₂ (300 µg/cm² of 78.6% ²⁴¹Pu, plus non-fissile ²⁴⁰Pu and ²⁴²Pu) glued with thin layer of cyanoacrylate between 25 µm thick Be foils ²⁴¹Am daughter freshly separated and target prepared at Kernchemie Mainz

²⁴¹Pu target and its inner vacuum chamber

Institut Laue-Langevin, blanc@ill.fr

²⁴¹Pu target and its inner vacuum chamber

Institut Laue-Langevin, blanc@ill.fr

²⁴¹Pu target and its inner vacuum chamber

Institut Laue-Langevin, blanc@ill.fr

Institut Laue-Langevin, blanc@ill.fr

New triggerless DAQ

Requirements:

- Handle high event rate (>600 kHz)
- Minimize dead time

- Accurate timing
- High data throughput

Institut Laue-Langevin, blanc@ill.fr

EXILL installation within 10 days

Institut Laue-Langevin, blanc@ill.fr

Institut Laue-Langevin, blanc@ill.fr

EXILL

Motivation Setup Performances

Institut Laue-Langevin, blanc@ill.fr

Institut Laue-Langevin, blanc@ill.fr

⁹²**Rb**: gamma-gamma spectrum **gated on 142-734 keV** γ-rays

W. Urban, ILL

Institut Laue-Langevin, blanc@ill.fr

⁹²**Rb**: gamma-gamma spectrum **gated on 142-734 keV** γ-rays

Institut Laue-Langevin, blanc@ill.fr

FOR SCIENCE

⁹²**Rb**: gamma-gamma spectrum **gated on 142-734 keV** γ-rays

Institut Laue-Langevin, blanc@ill.fr

FOR SCIENCE

First results

 "Germanium-gated y-y fast timing of excited states in fission fragments using the EXILL&FATIMA spectrometer", J.M. Regis & al., NIM A, 763, Pages 210–220

• "Test of the SO(6) selection rule in 196Pt using cold-neutron capture", J. Jolie et al., NuclearPhysics A 11/2014

"B(E2;2+1→0+1) value in Kr90", J.M. Regis & al., Phys. Rev. C 90, 067301

 "Near-yrast excitations in nucleus As 83 : Tracing the π g 9 / 2 orbital in the Ni 78 region", P. Bączyk & al., Physical Review C 91(4) · April 2015

Neutron-proton multiplets in the nucleus Br, M. Czerwinski & al., Physical Review C *July* 2015

First results

• "Germanium-gated y-y fast timing of excited states in fission fragments using the EXILL&FATIMA spectrometer", J.M. Regis & al., NIM A, 763, Pages 210–220

• "Test of the SO(6) selection rule in 196Pt using cold-neutron capture", J. Jolie et al., NuclearPhysics A 11/2014

B(E2;2+1→0+1) value in Kr90", J.M. Regis & al., Phys. Rev. C 90, 067301

 "Near-yrast excitations in nucleus As 83 : Tracing the π g 9 / 2 orbital in the Ni 78 region", P. Bączyk & al., Physical Review C 91(4) · April 2015

•*Neutron-proton multiplets in the nucleus* ⁸⁸Br", M. Czerwinski & al., Physical Review C **92(1)** · July 2015

FOR SCIENCE

FIssion Product Prompt γ-ray Spectrometer FIPPS layout FIPPS with fast neutrons

Institut Laue-Langevin, blanc@ill.fr

γ -ray detection with Ge array (EXILL-like)

/ Fission target with a thick backing

Institut Laue-Langevin, blanc@ill.fr

γ -ray detection with Ge array (EXILL-like)

Spectrometer

/ Fission target with a thick backing

Institut Laue-Langevin, blanc@ill.fr

 γ -ray detection with Ge array (EXILL-like)

Fission target with a thick backing

Spectrometer

Large acceptance ~10% (close to Ge array efficiency)
Not necessarily good mass resolution (~3-4 is acceptable)
Focal plan (for fission and 0.1 us isomers studies)

γ -ray detection with Ge array (EXILL-like)

Spectrometer

/ Fission target with a thick backing Large acceptance √10% (close to Ge array efficiency)
Not necessarily good mass resolution (~3 1 is acceptable)
Focal plan (for fission and 0.1 us isomers studies)

γ -ray detection with Ge array (EXILL-like)

/ Fission target with a thick backing

Spectrometer

Large acceptance ~10% (close to Ge array efficiency)
Not necessarily good mass resolution (~3 1 is acceptable)
Focal plan (for fission and 0.1 us isomers studies)

Allows Ekin measurement

Allows dE/dx measurement

Moveable for fast neutrons studies

γ -ray detection with Ge array (EXILL-like)

Spectrometer

/ Fission target with a thick backing Large acceptance √10% (close to Ge array efficiency)
Not necessarily good mass resolution (~3 1 is acceptable)
Focal plan (for fission and 0.1 us isomers studies)
Allows Eknemeasurement

• Allows dE tx measurement

Moveable for fast neutrons studies

γ -ray detection with Ge array (EXILL-like)

Spectrometer

/ Fission target with a thick backing Large acceptance ~10% (close to Ge array efficiency)
Not necessarily good mass resolution (~3 1 is acceptable)
Focal plan (for fission and 0.1 us isomers studies)

Allows Kkn measurement
Allows dEx x measurement

Moveable for fast neutrons studies

- Gas-Filled Magnet: simulations on going
- Ionization chambers \rightarrow LPSC know-how (in used at Lohengrin since 20 years)

FIssion Product Prompt γ-ray Spectrometer FIPPS layout FIPPS with fast neutrons

Institut Laue-Langevin, blanc@ill.fr

Nuclear structure:

• allow to reach **more neutron rich nuclei** by changing the fissioning system

- allow to reach **more neutron rich nuclei** by changing the fissioning system
- but much lower cross section (2 orders of magnitude)

- allow to reach more neutron rich nuclei by changing the fissioning system
- but **much lower cross section** (2 orders of magnitude)
 - \rightarrow need **thicker target** which may not be compatible with a mass spectrometer

- allow to reach more neutron rich nuclei by changing the fissioning system
- but much lower cross section (2 orders of magnitude)
 → need thicker target which may not be compatible with a mass spectrometer
- Nuclear fission:

- allow to reach more neutron rich nuclei by changing the fissioning system
- but much lower cross section (2 orders of magnitude)
 → need thicker target which may not be compatible with a mass spectrometer
- Nuclear fission:
 - Fission yields

- allow to reach more neutron rich nuclei by changing the fissioning system
- but **much lower cross section** (2 orders of magnitude)
 - \rightarrow need **thicker target** which may not be compatible with a mass spectrometer
- Nuclear fission:
 - Fission yields
 - Correlation between spin distribution and kinetic energy

- allow to reach more neutron rich nuclei by changing the fissioning system
- but much lower cross section (2 orders of magnitude)
 → need thicker target which may not be compatible with a
 - mass spectrometer
- Nuclear fission:
 - Fission yields
 - Correlation between spin distribution and kinetic energy
 - Low cross sections are less a problem since the analysis does not necessarily requires a triple coincidence

Conclusion

Institut Laue-Langevin, blanc@ill.fr

Conclusion (1)

FIPPS:

- Phase I: Ge array (end of 2016)
 - safe-handling of various actinide targets \rightarrow **ILL know-how**
 - halo-free pencil beam of neutron \rightarrow experimentally validated
 - safe operation of Germanium array close to neutron beam \rightarrow experimentally validated
 - \rightarrow possible use of 233U, 235U, 239Pu, 241Pu, 245Cm, 247Cm, 249Cf, 251Cf, ...
 - Itriggerless DAQ with high-rate capability (~6kHz/crystal) → experimentally validated
 - fission veto/tagging using scintillating active target \rightarrow being tested
- Phase II: Ge array + Spectrometer
 - 2016: end of design and looking for funding

The spectrometer is designed to be moveable. Interest from fast neutrons facilities is welcome.

Conclusion (2)

First FIPPS clovers during second half of 2016 => possible (n,γ) measurements during the last cycle of 2016

▶ Job offers at the ILL in the context of FIPPS:

• 2 Master internship (4-6 months)

- → Fission trigger development: A. Blanc, blanc@ill.fr
- → FIPPS collimation system: U. Koester, koester@ill.fr
- 1 FIPPS intrument responsible (5 years position)
- 1 PhD

→ Lifetime and g-factor measurments with FIPPS : M. Jentschel, jentschel@ill.fr

The EXILL collaboration

Institut Laue-Langevin, blanc@ill.fr